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Transport and dynamics on open quantum graphs
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We study the classical limit of quantum mechanics on graphs by introducing a Wigner function for graphs.
The classical dynamics is compared to the quantum dynamics obtained from the propagator. In particular, we
consider extended open graphs whose classical dynamics generate a diffusion process. The transport properties
of the classical system are revealed in the scattering resonances and in the time evolution of the quantum
system.
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I. INTRODUCTION

In this article we study quantum properties of systems t
present transport behavior such as normal diffusion in
classical limit. For classical systems, transport phenom
have been related to dynamical quantities by the escape
formalism@1#. In this formalism, the escape rate given by t
leading Pollicott-Ruelle resonance determines the diffus
coefficient of the system in the large-system limit. Since
classical time evolution is a good approximation of the qu
tum evolution in the so-called semiclassical regime, one
pects that kinetic properties such as the escape rate an
diffusion coefficient will emerge out of the quantum dynam
ics. Connections between the quantum scattering resona
and the classical diffusive behavior are also expected
cause, for open quantum systems, the quantum scatte
resonances determine the time evolution of the wave fu
tion.

The purpose of the present paper is to explore these
netic phenomena in model systems known as quan
graphs. These systems have similar spectral statistics o
ergy levels as the classically chaotic systems@2,3#. Since the
pioneering work by Kottos and Smilansky, several stud
have been devoted to the spectral properties of quan
graphs@4–6# and to their applications in mesoscopic phys
@7#. We have studied the level spacing distribution of qua
tum graphs, getting some exact results in simple cases@6#.
They have also provided the first model with a semiclass
description of Anderson localization@8#. Moreover, the clas-
sical dynamics of these systems was studied in detail in R
@9# where we introduced a time-continuous classical dyna
ics. In this way, the quantum and classical dynamics
graphs—and the relationships between them—can be stu
on the same basis as in other systems like billiards, for
stance. In this article, we go further in studying the conn
tion between the quantum and classical dynamics by sh
ing that the classical dynamics of Ref.@9# emerges out of the
quantum dynamics introduced in Refs.@2,3#.

With this correspondence established, and thanks to t
simplicity, the quantum graphs turn out to be good mod
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for studying the quantum properties of systems that pres
transport properties such as diffusion in the classical lim
These properties were previously studied in systems like
kicked rotor which has a classical dynamics~given by the
standard map! presenting deterministic diffusion for som
values of the parameters. In particular, the decay of the qu
tum staying probability, for an open version of the kicke
rotor, has been compared to the classical decay obtained
merically from simulation of the trajectories of the corr
sponding open standard map@10#. It has been argued that th
decay observed in the quantum staying probability is de
mined by the Pollicott-Ruelle resonances but no direct e
dence has been reported. Here, we present results that
that this is indeed the case. The continuous time evolution
the wave function for graphs is obtained from the propaga
that in turn is obtained from the Fourier transform of t
Green function on the graph. We present here a deriva
that allows us to compute this Green function and, therefo
the propagator. On the other hand, the classical dynamic
graphs developed in Ref.@9# allows us to compute the
Pollicott-Ruelle resonances. The Pollicott-Ruelle resonan
are of special importance because their quantum manife
tion has been found in experimental measures of some
relation functions in microwave scattering@11#.

Apart from the aforementioned time-dependent quanti
we have also studied spectral quantities like the quan
scattering resonances. The quantum scattering resona
have also been studied for the open kicked rotor. The dis
bution of their imaginary parts has been conjectured to
related to the diffusion process observed for the class
system@12#. Here, we present numerical support for this co
jecture by showing that the widths of the quantum re
nances have the power-law distribution of Ref.@12# for some
multiconnected diffusive graphs.

The article is organized as follows. In Sec. II, we defi
the quantum graphs and we review some of their main
ready known properties, namely, the formulation of th
quantization and its exact trace formula. Section III prese
the problem of scattering on quantum graphs. In Sec. II
we introduce a multiscattering expansion for the Green fu
tion on graphs. Green functions on graphs have been con
ered elsewhere@7#, but to our knowledge the multiscatterin
expression and the resumed closed form that we obtain h
not. Knowledge of the Green function allows us to obtain t
ti-
©2001 The American Physical Society05-1
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propagator on graphs and therefore to have access to t
dependent phenomena on graphs. The propagator is i
duced in Sec. III C. The emergence of the classical dynam
out of the quantum dynamics is studied in Sec. IV. In S
IV A, we introduce a Wigner function for graphs and com
pute the classical limit by neglecting interference betwe
different paths. This limit corresponds to the classical pr
ability density on the graphs, as we show in Sec. IV B, wh
we also summarize the most important results about the c
sical theory of graphs@9#. The quantum time evolution o
open graphs is considered in Sec. IV D where we comp
the decay of the quantum staying probability with the cl
sical decay of the density as obtained from the Pollico
Ruelle resonances presented in Sec. IV E. We do this c
parison for small systems and for large systems wher
diffusion process dominates the classical escape. In Se
we analyze the statistical properties of the distribution
quantum scattering resonances. Here, we present a deriv
of the resonance density using the concept of Lagrange m
motion of an almost periodic function. Examples are giv
and discussed in Sec. VI. The quantities plotted there
dimensionless. Conclusions are drawn in Sec. VII.

II. QUANTUM GRAPHS

A. Definition of graphs

Let us introduce graphs as geometrical objects wher
particle moves. Graphs areV vertices connected byB bonds.
Each bondb connects two verticesi and j. We can assign an
orientation to each bond and define ‘‘oriented’’ or ‘‘directe
bonds.’’ Here, one fixes the direction of the bond@ i , j # and
calls b5( i , j ) the bond oriented fromi to j. The same bond
but oriented fromj to i is denotedb̂5( j ,i ). We note thatb9

5b. A graph withB bonds has 2B directed bonds. The va
lencen i of a vertex is the number of bonds that meet at
vertex i.

Metric information is introduced by assigning a lengthl b
to each bondb. In order to define the position of a particle o
the graph, we introduce a coordinatexb on each bondb
5@ i , j #. We can assign either the coordinatex( i , j ) or x( j ,i ) .
The first one is defined such thatx( i , j )50 at i andx( i , j )5 l b at
j, whereasx( j ,i )50 at j andx( j ,i )5 l b at i. Once the orienta-
tion is given, the position of a particle on the graph is det
mined by the coordinatexb where 0<xb< l b . The indexb
identifies the bond and the value ofxb the position on this
bond.

For some purposes, it is convenient to considerb andb̂ as
different bonds within the formalism. Of course, the physi
quantities defined on each of them must satisfy some con
tency relations. In particular, we should have thatl b̂5 l b and
xb̂5 l b2xb .

We introduce here some notation that we are going to
next. For oriented bondsb we define the functionsq(b) and
p(b) that give the vertex at the origin and at the end ofb,
respectively. Thus, for the bondb5( i , j ), we haveq(b)5 i
and p(b)5 j . These functions are well defined for grap
with multiple loops and bonds also. In the last case th
functions take the same values for two or more differ
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bonds. Note that we have the equalitiesp(b)5q(b̂) and
q(b)5p(b̂).

B. Quantum mechanics of a particle on a graph

On each bondb, the componentcb of the total wave
functionC is a solution of the one-dimensional Schro¨dinger
equation. This means that the dimension of the vectorC
5@c1(x), . . . ,cB(x)#T is B, but when we consider directe
bonds as different it will be of dimension 2B, with B com-
ponents containing redundant information@see Eq.~3! be-
low#. We consider the time-reversible case~i.e., without
magnetic field!

2
d2

dx2
cb~x!5k2cb~x!, b5~ i , j !, ~1!

wherek5A2mE/\ is the wave number andE the energy.
@We use the shorthand notationcb(x) for cb(xb) and it is
understood thatx is the coordinate on the bondb to which
the componentcb refers.# Moreover, the wave function mus
satisfy boundary conditions at the vertices of each bondi
and j in the previous equation!. The solutions will have the
form

cb~x!5c1~b!exp~ ikx!1c2~b!exp~2 ikx!, ~2!

where the boundary conditions impose restrictions onc1(b)
and c2(b), which are the amplitudes of the forward an
backward moving waves on the bondb @2,3,13#.

If we consider oriented bonds, the wave function in
bondb and in the corresponding reversed bondb̂ must sat-
isfy the following consistency relation:

c b̂~x!5cb~ l b2x!. ~3!

C. Boundary conditions and quantization conditions

A natural boundary condition is to impose the continu
of the wave function at all the vertices together with curre
conservation. This case was studied in@14,15#, where the
most general form of current conservation for which the
sulting Schro¨dinger operator is self-adjoint was obtaine
There is, however, a general boundary condition, where
consider a scattering process at each vertex. In each ver
~unitary! scattering matrix relates outgoing waves to the
coming ones. If we denote bysi the scattering matrix for the
vertex i the condition is

ca
out~ i !5(

b
sab

i cb
in~ i !,

where the sum is over all the~nondirected! bonds that meet
at i. For a5” b, sab

i is the transmission amplitude for
wave that is incident at the vertexi from the bondb and is
transmitted to the bonda. Similarly, saa

i is a reflection am-
plitude. The matrixsi has dimensionn i3n i wheren i is the
valence of the vertexi. This equation is imposed at all ve
tices and for all the bonds that meet in the vertex.
5-2
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TRANSPORT AND DYNAMICS ON OPEN QUANTUM GRAPHS PHYSICAL REVIEW E65 016205
Now we consider oriented bonds, which allows us
write the previous boundary condition in the following wa

ca
out@q~a!#5(

b
sab

q(a)d„q~a!,p~b!…cb
in@p~b!#, ~4!

where the sum is over all the 2B directed bonds and th
equation is imposed on every directed bonda because the se
of all directed bonds is equivalent to the set of all vertic
with the ~nondirected! bonds that meet at the vertex.

As a consequence of Eq.~3! we have the relation

cb
in@p~b!#5exp~ ikl b!cb

out@q~b!#. ~5!

Setting the expression~5! in Eq. ~4! we get

ca
out@q~a!#5(

b
Tab exp~ ikl b!cb

out@q~b!#

from which follows the quantization condition

det@ I2R~k!#50 ~6!

with

R5TD~k! ~7!

a unitary matrix of dimension 2B where

Dab5dabe
ikl a with l a5 l b ~8!

and

Tab5sab
q(a)d„q~a!,p~b!…. ~9!

Equation~6! gives the eigenenergies$kn
2%. Note thatTab is

the transmission amplitude fromb to a @if they are oriented
such thatp(b)5q(a)#. The reflection amplitude is nowTâa
and notTaa , which vanishes due to thed function in Eq.~9!.

From Eq.~6! an exact trace formula can be obtained@2,3#:

d~k!5
L tot

p
1

1

p (
p,r

Ap
r l p cos~rkl p!, ~10!

whereL tot /p gives the mean density of levels and the osc
lating term is a sum over prime periodic orbits and th
repetitions.Ap5Tab•••Tza is the probability amplitude of
the prime periodic orbit and plays the role of stability fact
including the Maslov index. The Lyapunov coefficient p
unit length of the orbitl̃p is defined by the relationuApu2

5el̃pl p.

III. QUANTUM SCATTERING ON GRAPHS

So far we have considered bonds of finite length. Wh
we attach semi-infinite leads to some vertices, the phys
problem changes because there is now escape from the g
and thus it must be analyzed as a scattering system.
scattering matrix is a square matrix of a dimension t
equals the number of open channels. For graphs these c
nels have a concrete meaning; they are theL semi-infinite
01620
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leads of the graph. In this section, we shall introduce
scattering matrixS for graphs and we shall show that it ha
a multiscattering expansion, closely related to the one
shall obtain for the Green function. Scattering on graphs w
also studied by Kottos and Smilansky, who showed that t
display typical features of chaotic scattering@16#.

A. Scattering matrix S

On each bond and lead the Schro¨dinger equation allows
counterpropagating solutions. We denote byc the scattering
leads and byc5$c% the set of all the scattering leads. Mor
over, we denote byb5$b% the set of all the bonds forming
the finite part of the open graph without its leads. TheL
3L scattering matrixS relates the incoming amplitudes t
the outgoing ones as

Cout~c!5SCin~c!. ~11!

We shall derive the matrixS starting from Eq.~4!, which
together with Eq.~9! reads

ca
out5(

b
Tabcb

in . ~12!

This equation is valid for every directed bond and eve
directed lead. We have dropped the explicit dependence
the vertex in Eq.~12! @see Eq.~4!# because it is always
understood that the incoming wavecb

in in the directed bondb
is incident to the vertexp(b) while the outgoing wavecb

out

emanates fromq(b). This convention is used throughout th
present paper. We assume that the scattering leads are
ented from the graph to infinity. Since the leads are infin
there is no scattering from the lead to the reversed lead,
is, theL3L submatrixTĉc50. Neither is there transmissio
from a bond to a reversed lead, nor from a lead to a bo
That is, theL32B submatrixTĉb50 and the 2B3L subma-
trix Tbc50. Moreover,Tĉĉ50 andTcc50 due to thed func-
tion in definition ~9! and the selection of the orientation o
the leads. Thus, in matrix form, Eq.~12! reads

F Cout~ ĉ!

Cout~c…

Cout~b…
G5F 0 0 0

Tcĉ 0 Tcb

Tbĉ 0 Tbb

GF Cin~ ĉ!

Cin~c…

Cin~b…
G ,

whereTcĉ is an L3L matrix whose elements represent t
direct lead-to-lead transmission or reflection amplitudes. T
matrix Tcb is anL32B matrix whose elements represent t
bond-to-lead transmission and, similarly, the matrixTbĉ is a
2B3L matrix whose elements represent the lead-to-bo
transmission. Finally, the matrixTbb is the 2B32B matrix
that we have simply calledT for the closed graphs and
represents bond-to-bond transmission or reflection. N
however, that, for a vertex with an attached scattering le
the bond-to-bond probability amplitude is different from th
one for the graph without the scattering lead because
valence of the vertex has changed fromn i to n i
1$no. of leads attached toi %. The previous matrix equation
can be rewritten as
5-3
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Cout~c!5TcĉCin~ ĉ!1TcbCin~b!, ~13!

Cout~b!5TbĉCin~ ĉ!1TbbCin~b!, ~14!

and now we use the relation given in Eq.~5!. With the con-
vention introduced after Eq.~12!, we can write Eq.~5! in a
matrix form as

Cin~b!5D~k!Cout~b! ~15!

with the diagonal (2B32B) matrix D defined in Eq.~8!.
Thus from Eq.~14! and Eq.~15! we get

Cin~b!5~D212Tbb!21TbĉCin~ ĉ!.

Replacing this last equation in Eq.~13! we obtain

Cout~c!5$Tcĉ1Tcb@ I2R~k!#21DTbĉ%Cin~ ĉ!,

where we wroteR(k)5D(k)Tbb . That is, the outgoing
waves on the leads are determined by the incoming wave
the leads. This gives the desired scattering matrix

S5Tcĉ1Tcb@ I2R~k!#21DTbĉ , ~16!

which appears in Eq.~11! once we identify each lead and i
reverse as the same physical lead. The multiple scatte
expansion is obtained from

@ I2R~k!#215 (
n50

`

R~k!n.

In a similar way as was done for the trace formula we can
that

Scc85@Tcĉ#cc81 (
pPPc8→c

Ap exp@ ikl p~c8,c!#

with Pc8→c the set of trajectories that go fromc8 to c. As
usual Ap is the amplitude with a phase of the path a
l p(c8,c) the length of the path given by the sum of the tr
versed bond lengths.

B. Green function for graphs

Following Balian and Bloch@17# we seek for a multiscat
tering expansion of the Green function. The Green funct
represents the wave function in the presence of a p
source. We shall identify the bond where the point sourc
with the bond 1. In this bond, the point source is located
x15x8. Since we shall work with directed bonds the sour
also appears at the pointx1̂5 l 12x8 on the bond 1ˆ . The
Green function satisfies the following equation:

d2

dx2
G1~x,x8!1k2G1~x,x8!5

2m

\2
d~x2x8!, 0,x,x8, l 1 ,

d2

dx2
G1̂~x,x8!1k2G1̂~x,x8!5

2m

\2
d~x2 l 11x8!,
01620
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d2

dx2
Gb~x,x8!1k2Gb~x,x8!50, ; b5” $1,1̂%.

Note thatx8 is fixed to belong to the bond 1. The Gree
function satisfies the same boundary condition as the w
function.

In the spirit of a multi-scattering solution we assume th

Gb~x,x8!5G0~x,x8!db11G0~x,l 12x8!d b̂1

1G0~x,0!mq(b)~x8!1G0~x,l b!mp(b)~x8!,

~17!

where G0(x,x8)5(2m/\2)(eikux2x8u/2ik) is the free Green
function and represents an outgoing wave fromx8. The jus-
tification of this ansatz is the following. In the bond 1, th
wave function consists of the superposition of the wave em
nating from the source atx8 plus waves that arrive from the
borders of the bond. On the other bonds~i.e., not 1 or 1ˆ )
only these waves are present. Since we are dealing with
rected bonds we call the vertices at the border ofb q(b) and
p(b) as usual.

We have to impose on the Green function the consiste
condition

Gb̂~x,x8!5Gb~ l b2x,x8!. ~18!

The observation that

G0~x,l 12x8!5G0~ l 12x,x8!,

G0~ l b2x,0!5G0~x,l b!,

G0~ l b2x,l b!5G0~x,0!

leads us to conclude from Eq.~18! that

mq(b̂)~x8!5mp(b)~x8!,

mp(b̂)~x8!5mq(b)~x8!.

Now, we impose the boundary condition that is given by E
~12!. With this aim we have to identify incoming and outgo
ing components. The amplitude of the incoming wave fun
tion from the bondb is

cb
in5G0~ l b ,x8!db11G0~ l b ,l 12x8!db1̂1G0~ l b,0!mq(b)~x8!

where the first two terms represent the incoming amplitu
of a wave emanating fromx8 if we are on the bond 1 or 1ˆ .
The third term is the incoming amplitude of the wave tran
mitted to the origin ofb. For the outgoing amplitude on th
bondb we have

cb
out5G0~0,0!mq(b)~x8!.

Thus the boundary condition Eq.~12! gives
5-4
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m

ik\2
mq(a)~x8!5(

b
Tab@G0~ l b ,x8!db11G0~ l b ,l 12x8!db1̂

1G0~ l b,0!mq(b)~x8!#,

where we used thatG0(0,0)5m/ ik\2. We defineg(x,x8)
5( ik\2/m)G0(x,x8). If we agree to denote byTg( l ,0) the
matrix whoseab elements areTabg( l b,0) and byTg( l ,x8)
the matrix whoseab elements areTabg( l b ,x8), we can re-
write the previous system of equations in the more con
nient vectorial form

mq~x8!5Tg~ l ,x8!•e11Tg~ l ,l 12x8!•e1̂1Tg~ l ,0!•mq~x8!,

wheree1 (e1̂) is the 2B-dimensional vector of componen
t

s

n
o

b

01620
-

@e1#b5db1 (@e1̂#b5db1̂). The solution to these equation
can be written as

mq~x8!5@ I2Tg~ l ,0!#21@Tg~ l ,x8!•e11Tg~ l ,l 12x8!•e1̂#.

~19!

Substitutingmp(b)(x8)5mq(b̂)(x8) in Eq. ~17!, we have ob-
tained the Green function for graphs. We note thatTg( l ,0)
5R(k) and thus the Green function has poles at the re
nances. The multiple scattering form follows from the we
known expansion (I2R)215I1R1R21R31•••. Remem-
bering that mp(a)(x8)5mq(â)(x8), we have that thea
component of the Green function is
Ga~x,x8!5G0~x,x8!da11G0~x,0!@Ta1g~ l 1 ,x8!1Ta1̂g~0,x8!#1G0~x,l a!@Tâ1g~ l 1 ,x8!1Tâ1̂g~0,x8!#

1G0~x,0!(
b

Tabg~ l b,0!@Tb1g~ l 1 ,x8!1Tb1̂g~0,x8!#1G0~x,l a!(
b

Tâbg~ l b,0!@Tb1g~ l 1 ,x8!1Tb1̂g~0,x8!#

1G0~x,0!(
b,b8

Tabg~ l b,0!Tbb8g~ l b8,0!@Tb81g~ l 1 ,x8!1Tb81̂g~0,x8!#1G0~x,l a!(
b,b8

Tâbg~ l b,0!Tbb8g~ l b8,0!

3@Tb81g~ l 1 ,x8!1Tb81̂g~0,x8!#1•••. ~20!
r all

ility
en
ics,
the
li-
Noticing thatg(x,x8)5eikux2x8u we can write the previous
result in the more convenient notation

Ga~x,x8!5
2m

\2

1

2ik (
$p%

Apeikl p(x,x8), ~21!

where Ap is the probability amplitude of the pathp that
connects the initial pointx8 on the bond 1 to the final poin
x on the bonda. If the pathp is composed of then bonds
1b2•••bn21a then

Ap5Tabn21
Tbn21bn22

•••Tb21 .

The fact thatG0(x,x8) andg(x,x8) depend on the modulu
of the differencesux2x8u implies that, in Eq.~20!, we are
always adding lengths. Thusl p(x,x8) is the total length of
the paths that connectsx8 to x.

The expression~21! is like a path-integral representatio
of the Green function: We add the probability amplitudes
all the paths connectingx8 to x in order to get the Green
function.

C. Propagator for graphs

The Green functions and the propagator are related
Fourier or Laplace transforms:
f

y

Ga
(1)~x,x8;E!5 lim

e→01

1

i\E0

`

dt exp~2et !

3expS i

\
EtDKa~x,x8;t !,

Ka~x,x8;t !5
1

2p i EC11C2

dE expS 2
i

\
EtDGa~x,x8;E!,

~22!

where the contourC1 goes from ReE51` to ReE52`
with a positive imaginary part, whileC2 goes from ReE5
2` to ReE51` with a negative imaginary part.

Using expression~21! for the Green function, we get from
Eq. ~22! that

Ka~x,x8;t !5A m

2ip\t (
$p%

Apeimlp(x,x8)2/2\t. ~23!

This expression shows that the propagator is the sum ove
the paths$p% that join x8 to x in a fixed timet. Each term is
composed of a free propagator weighted by the probab
amplitude of the given path. This result could have be
guessed from the general principles of quantum mechan
i.e., if there are many ways to obtain a given result then
probability amplitude is the sum of the probability amp
tudes of the different ways of obtaining the result.
5-5
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The closed form of the Green function@given by Eqs.~17!
and ~19!# and the fast Fourier transform allow us to obta
the propagator numerically as a function of the timet and,
therefore, the time evolution of a wave packet. We shall
velop this possibility after analyzing the classical limit
quantum mechanics on graphs in the following section.

IV. EMERGING CLASSICAL DYNAMICS ON QUANTUM
GRAPHS

The emergence of the classical dynamics out of the qu
tum dynamics can be studied by introducing the concep
the Wigner function. Such a function should tend to the cl
sical probability density in the classical limit.

A. Wigner functions on graphs

The so-called Wigner function was introduced by Wign
in order to study systems with a potential extending over
infinite physical space. For graphs, we cannot use the s
definition since each bond is either finite or semi-infinite. W
define a Wigner function for a graph in the following wa
On each~nondirected! bond a the Wigner function is given
by

f a~x,p!5
1

2p\E22x

12x

dyeipy/\ca~x2y/2!ca* ~x1y/2!

for 0,x,
l a

2
~24!

and

f a~x,p!5
1

2p\E2(2l a22x)

1(2l a22x)

dyeipy/\ca~x2y/2!

3ca* ~x1y/2!

for
l a

2
,x, l a . ~25!

In this way, the argument of the wavefunctions always
mains in the interval (0,l a) corresponding to the bonda. We
notice thatf a(x50,p)5 f a(x5 l a ,p)50 with the definitions
~24! and ~25!.

The Wigner function is a ‘‘representation’’ of the wav
function in phase space and it is essential to have a un
correspondence between the Wigner function and the w
function. In order to show that this is the case with our de
nition, we multiply Eq. ~24! by eipy/\ and integrate with
respect top to get

E
2`

1`

dpeipy/\ f a~x,p!5ca~x1y/2!ca* ~x2y/2!. ~26!

If we sety50 we obtain the probability density on the bon
a:

uca~x!u25E
2`

1`

dp fa~x,p!. ~27!
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On the other hand, if we setx5y/2 in Eq. ~26! we get

E
2`

1`

dpeipy/\ f a~y/2,p!5ca~y!ca* ~0!,

which is valid for 0,x5y/2, l a/2, i.e., 0,y, l a , and we
recover the wave function~or its conjugate! on all the bonds
except for a constant factor that is fixed by the bound
condition and normalization. We could also have procee
in a similar way with Eq.~25!. We notice that this resul
shows that there is redundant information in the Wign
function. The conclusion is that the wave function on all t
bonds is encoded in all the Wigner functions$ f a(x,p)%a51

B .
Since a wave function can always be written in terms

the propagator~which is also a solution of the Schro¨dinger
equation and represents the evolution from ad localized ini-
tial state! we will compute the Wigner function for the propa
gator. Other cases are obtained by convenient averages
the initial conditions. Thus we need to computeK(x
2y/2,x8;t)K* (x1y/2,x8;t). With this purpose, we use th
expression~23! which expresses the propagator as a s
over paths~in this section we use the letters to refer to paths
in order to avoid confusion with the momentump):

Ka~x2y/2,x8;t !Ka* ~x1y/2,x8;t !

5
m

2p\t (
ss8

AsAs8e
im[ l s(x2y/2,x8)22 l s8(x1y/2,x8)2]/2\t

with l s(x,x8) the length of the trajectorys that joinsx8 to x.
We note that for a path that starts atx8 on a bondb0 and

ends atx on the bondb the lengths can be as follows.
l s(x,x8)5( l b0

2x8)1 l̃ s1x, if the path goes fromx8 to

the end ofb0 and then eventually traverses other bonds, a
ing a distancel̃ s , and arrives at the positionx of the bondb
via its origin.

l s(x,x8)5x81 l̃ s1x, if the path goes fromx8 to the ori-
gin of b0 and then eventually traverses other bonds, addin
distancel̃ s , and arrives at the positionx of the bondb via its
origin.

l s(x,x8)5( l b0
2x8)1 l̃ s1( l b2x), if the path goes from

x8 to the end ofb0 and then eventually traverses other bon
adding a distancel̃ s , and arrives at the positionx of the bond
b via the end ofb.

l s(x,x8)5x81 l̃ s1( l b2x), if the path goes fromx8 to the
origin of b0 and then eventually traverses other bonds, a
ing a distancel̃ s , and arrives at the positionx of the bondb
via its end.

We now evaluate the differencel s(x2y/2,x8)2 l s(x
1y/2,x8) for equal paths. We obtain

l s~x2y/2,x8!2 l s~x1y/2,x8!52y,

l s~x2y/2,x8!2 l s~x1y/2,x8!51y.
5-6
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The first result holds for trajectories that arrive at the fin
bond via its origin and the second result for trajectories t
arrive via the end. Now we compute the sum, which is
both cases

l s~x2y/2,x8!1 l s~x1y/2,x8!52l s~x,x8!.

Using the identitya22b25(a1b)(a2b) we have the re-
sults

l s
2~x2y/2,x8!2 l s

2~x1y/2,x8!522yls~x,x8!,

l s
2~x2y/2,x8!2 l s

2~x1y/2,x8!512yls~x,x8!

for paths that arrive through the origin or the end of the bo
b, respectively. We considered equal paths because we
to separate their contribution to the Wigner function, whi
we call the diagonal term

@Ka~x2y/2,x8;t !Ka* ~x1y/2,x8;t !#diag

5
m

2p\t H(s1

As1

2 e2 iymls1
(x,x8)/\t

1(
s2

As2

2 e1 iymls2
(x,x8)/\tJ ,

wheres1 is the set of paths that arrive at the bonda through
the vertex at the origin of the bonda ands2 are those paths
that arrive through the vertex at the end.

For the nondiagonal term the differences in the expon
are always of the form

l s
2~x2y/2,x8!2 l s8

2
~x1y/2,x8!

5@ l s~x,x8!2 l s8~x,x8!#@ l s~x,x8!1 l s8~x,x8!6y#

or

l s
2~x2y/2,x8!2 l s8

2
~x1y/2,x8!

5@ l s~x,x8!2 l s8~x,x8!6y#@ l s~x,x8!1 l s8~x,x8!#;

hence we get nondiagonal terms of the form

@Ka~x2y/2,x8;t !Ka* ~x1y/2,x8;t !#nondiag

5
m

2p\t (
s5” s8

AsAs8e
im[ l s(x,x8)22 l s8(x,x8)2]/2\t

3e6 iym[ l s(x,x8)6 l s8(x,x8)]/2\t.

The calculation of the Wigner function~24!,~25!, requires the
evaluation of integrals of the form

E
2x0

1x0
ei (p6V)y/\dy52\

sin~x0 /\!~p6V!

p6V
, ~28!

where V5mls(x,x8)/t for the diagonal term andV
5m@ l s(x,x8)6 l s8(x,x8)#/2t for the nondiagonal terms. In
the classical limit we have that
01620
l
t

d
nt

nt

lim
\→0

sin~x0 /\!~p6V!

p6V
5pd~p6V! ~29!

from which we obtain the Wigner function in the limit\
→0. In the classical limit, the phase variations of the non
agonal terms are so wild that the total sum is zero due
destructive interferences. We thus have the result that, in
classical limit\→0, the Wigner function defined for graph
becomes

f b~x,p;t !.
m

2p\t H(s1

As1

2 d@p1mls1
~x!/t#1(

s2

As2

2

3d@p2mls2
~x!/t#J . ~30!

This limit corresponds to the motion of the classical dens
in the phase space of the corresponding classical system
the next section, we shall establish that, indeed, the class
dynamics causes the probability density to evolve in ph
space according to Eq.~30!.

B. Classical dynamics on graphs

We have computed the classical limit for the Wigner fun
tion on graphs@see Eq.~30!#, which should be a solution o
the classical ‘‘Liouville’’ equation. In this section, we sha
summarize the main result obtained in Ref.@9#, where we
studied in detail the classical dynamics on graphs, and
shall show that the density~30! is the solution of the classica
equation. Therefore, the classical dynamics that we disc
hereis the classical limit of the quantum dynamics on grap
as obtained from the classical limit of the Wigner function

On a graph, a particle moves freely as long as it stays
a bond. At the vertices, we have to introduce transition pr
abilities Pbb85uTbb8u

2. This choice is dictated by the
quantum-classical correspondence as we shall see in this
tion. The dynamics is expressed by the following mas
equation~we consider the notationxb5@b,x#):

r~@b,x#,t !5(
b8

Pbb8rS @b8,x8#,t2
x1 l b82x8

v D . ~31!

The time delay corresponds to the time taken to arrive fr
x8 in the bondb8 to x in the bondb.

The densityr(@b,x#,t) defined on each directed bond is
density defined on a constant energy surface of phase sp
In fact, the conservation of energy fixes the modulus of
momentum and, therefore, the points of the constant ene
surface are given by the position on the bond and the di
tion on the bond, that is, by the position on directed bon

The properties of this classical dynamics for open a
closed systems are described in Ref.@9# where we also show
that it can be understood as a random suspended flow.

To establish the connection with the classical limit of t
Wigner function we iterate the master equation~31!. In Ref.
@9# we have shown that iterating the master equation allo
us to obtain the density at the current timet in terms of the
5-7
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density at the initial timet050, which gives an explicit form
for the Frobenius-Perron operator:

r~@b,x#,t !5(
n

(
b8b9•••b(n)

Pbb8Pb8b9•••Pb(n21)b(n)

3r~@b
(n)

,x
(n)

#,0! ~32!

with

x(n)5x2vt1(
i 51

n

l b( i ) .

Accordingly, r(@b,x#,t) is given by a sum over the initia
conditions @b

(n)
,x

(n)
# and over all the paths that conne

@b
(n)

,x
(n)

# to @b,x# in a timet. Each given path contributes t
this sum by its probability multiplied by the probability den
sity r(@b

(n)
,x

(n)
#,0).

If the initial distribution is concentrated at a point, i.e.,

r~@b
(n)

,x
(n)

#,0!5db(n)b
*
d~x* 2x(n)!, ~33!

Eq. ~32! can be expressed as

r~@b,x#,t !5
1

v (
n

(
b8b9•••b(n)

Pbb8Pb8b9•••Pb(n21)b(n)

3dS t2

x1(
i 51

n

l b( i )2x*

v
D db(n)b

*
, ~34!

where we use the propertyd(ax)5d(x)/a.

C. Connection with the classical limit of Wigner functions

The probability density at a given timet is provided by
the classical Frobenius-Perron operator~32!. For the particu-
lar initial condition~33! this leads to Eq.~34!. Remembering
that the probability of a paths was written asAs

2 ~we use
again the letters to denote a path sincep is used for the
momentum! and noting that the sum in Eq.~34! is a sum
over all the paths connectingb* to b, we can rewrite Eq.~34!
as

r~@b,x#,t !5
1

v (
s(b

*
→b)

As
2dS t2

l s~x,x* !

v D ~35!

and by the property of thed function

1

v
dS t2

l s~x,x* !

v D5
1

t
dS v2

l s~x,x* !

t D
5

m

t
dS mv2

mls~x,x* !

t D ,

so that Eq.~35! is equivalent to
01620
r~@b,x#,t !5
m

t (
s(b

*
→b)

As
2dS p2

mls~x,x* !

t D , ~36!

wherep5mv. Equation~36! is ~up to the normalization fac-
tor 1/2p\) the classical limit of the Wigner function as ob
tained in Eq.~30!. The Wigner function~30! also contains a
term with 2p because in Sec. IV A we defined the Wign
function for nondirected bonds although we deal with
rected bonds in the present section. Equation~36! is the
probability density of being in the oriented bondb with mo-
mentump. In the reversed bondb̂ we also have a probability
density that is obtained from the density inb by reversing the
sign of p. Therefore, the probability density of being in th
nondirected bondb is

m

t (
s2(b

*
→b)

As2

2 dS p2
mls2

~x,x* !

t
D 1

m

t (
s1(b

*
→b)

As1

2

3dS p1
mls1

~x,x* !

t
D

with s1 ands2 the set of paths defined for the Wigner fun
tion in Sec. IV A. The comparison with Eq.~30! shows that
the quantum time evolution of the Wigner function corr
sponds to the classical time evolution of the probability de
sity given by the classical Frobenius-Perron operator~32! in
the classical limit:

f b~x,p;t !.
1

2p\
r~@b,x#,t ! for \→0. ~37!

Accordingly, the classical dynamics introduced in Ref.@9#
and summarized in Sec. IV B is the classical limit of th
quantum dynamics on graphs of Sec. II.

D. Quantum time evolution of staying probabilities

The preceding results show that the classical dynam
emerges out of the quantum dynamics of quantities such
averages or staying probabilities which can be defined
terms of Wigner functions. Since the Wigner functions ha
a Liouvillian time evolution according to the Frobeniu
Perron operator in the classical limit\→0, we should expect
an early decay given in terms of the Pollicott-Ruelle res
nances, which are the generalized eigenvalues of the L
villian operator. For graphs, the Pollicott-Ruelle resonan
have been described in Ref.@9#. Our purpose here is to show
that indeed the Pollicott-Ruelle resonances control the e
quantum decay of the staying probability in a finite part of
open graph.

The quantum time evolution of the wave function is o
tained from the propagator as

c~ t !5K̂~ t !c~0!,

wherec(0) represents the initial wave packet. As we said
Sec. III C the propagator can be obtained from the Gre
function for graphs by Fourier transformation. Therefore
can computecb(x,t).
5-8



e

n
e

n-

ns

on
ro
as
a

in
rt
l-

a
th
h

a
o
a

he
the

us-

is
lude

tial

t

-

s
he

-

ding

be-

the
tro-
i-
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The quantum staying probability~or survival probability!
P(t) is defined as the probability of remaining in th
bounded part of an open graph at timet. Since the particles
that escape cannot return to the graph, there is no recurre
and the staying probability is equal to the probability of b
ing in the graph until the timet:

P~ t ![(
b
E

0

l b
dxucb~x,t !u2.

To computeP(t) we can proceed as follows. First, we co
sider some initial wave packetc1(y,0) on the bond 1 and
with mean energyĒ. The Green functionGb(x,y,E) ~where
the indexb refers to the coordinatex on the bondb andy is
a coordinate on the bond 1! is computed from Eqs.~17! and
~19!. Then the propagator is obtained from the Fourier tra
form

Kb~x,y,t !5E
C11C2

Gb~x,y,E!expS 2
i

\
EtDdE

and the wave function is given by

cb~x,t !5E
0

l 1
dyKb~x,y,t !c1~y,0!.

P(t) is the quantum analog of the density distributi
integrated over the graph, that is, the classical staying p
ability. For a classically chaotic graph we know that the cl
sical staying probability decays exponentially with a dec
rate given by the leading Pollicott-Ruelle resonance~see Ref.
@9#!. From semiclassical arguments, the quantum stay
probability P(t) should follow the classical decay for sho
times. Indeed, using Eq.~27!, the quantum staying probabi
ity can be expressed in terms of the Wigner function~24!
according to

P~ t !5(
b
E

0

l b
dxE

2`

1`

dp fb~x,p;t !. ~38!

In the classical limit\→0, Eq.~37! implies that the quantum
staying probability evolves as

P~ t !.(
b
E

0

l b
dxE

2`

1`

dp
1

2p\
r~@b,x#,t !. ~39!

For an energy distribution well localized around the me
energyĒ of the initial wave packet, we can suppose that
classical evolution takes place essentially on the energy s
of energyĒ.

If we denote byP̂t the classical Frobenius-Perron oper
tor and byr0 the initial probability density corresponding t
the initial wave packet, the quantum statying probability c
be written as

P~ t !.^AuP̂tr0& for \→0, ~40!

where we have introduced the observableA defined by
01620
ce,
-

-

b-
-
y

g

n
e
ell

-

n

A@b,x#5
l b

2p\
for bPb,

A@c,x#50 for cPc,

which is the indicator function of the bounded part of t
open graph. Using the spectral decomposition of
Frobenius-Perron operator described in Ref.@9#, the quantum
staying probability thus has the following early decay:

P~ t !.(
j

^AuVj&e
sj t^Ṽj ur0& for \→0 ~41!

in terms of the left and right eigenvectors of the Frobeni
Perron operator

P̂tVj5esj tVj and P̂t†Ṽj5esj* tṼ j ~42!

~see Ref.@9#!. Since the leading Pollicott-Ruelle resonance
the classical escape rate for an open graph, we can conc
that the quantum staying probability will have an exponen
early decay according to

P~ t !;exp@2gcl~ v̄ !t# ~43!

in terms of the classical escape rategcl( v̄)5 v̄gcl(v51),

wherev̄5A2Ē/m is the velocity of the classical particle a
the mean energyĒ5mv̄2/2.

E. The classicalz function and the Pollicott-Ruelle resonances

We have shown in Ref.@9# that the Pollicott-Ruelle reso
nances of a classical particle moving with velocityv on a
graph can be computed as the complex zeros$sj% of the
classical Selberg-Smalez function of the graph given by

Zcl~s!5det@ I2Q~s!#50

in terms of the matrix

Qbb8~s!5Pbb8e
2slb8 /v,

where Pbb85uTbb8u
2 are the transition probabilities. Thi

classicalz function can be rewritten as a product over all t
prime periodic orbits on the graph as@9#

Zcl~s!5Pp@12e2(l̃pl p1s lp/v)#. ~44!

The zeros of the classicalz function for a scattering sys
tem are located in the half plane Resj,0 and there is a gap
empty of resonances below the axis Resj50. This gap is
determined by the classical escape rate, which is the lea
Pollicott-Ruelle resonance:s052gcl .

F. Emerging diffusion in spatially extended graphs

On spatially extended graphs, the classical motion
comes diffusive. We showed in Ref.@9# that the diffusion
coefficient for a periodic graph can be computed from
Pollicott-Ruelle resonances of the extended system by in
ducing a classical wave numberq associated with the class
5-9
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F. BARRA AND P. GASPARD PHYSICAL REVIEW E65 016205
cal probability density. Therefore, the leading Pollico
Ruelle resonance acquires a dependence on this w
number according to

s0~q!52Dq21O~q4!, ~45!

whereD is the diffusion coefficient.
If the spatially extended periodic chain is truncated

keep onlyN unit cells and semi-infinite leads are attached
the ends, we have furthermore shown in Ref.@9# that the
classical escape rate depends on the diffusion coefficien
cording to

gcl~N!'D
p2

N2
~46!

in the limit N→`.
The previous results on the classical-quantum corresp

dence show that this diffusive behavior is expected in
early time evolution of the quantum staying probability f
such spatially extended open graphs. This result will be
lustrated in Sec. VI.

V. THE QUANTUM SCATTERING RESONANCES

A. Scattering resonances

The scattering resonances are given by the poles of
scattering matrixS in the complex plane of the quantum
wave numberk. These poles are the complex zeros of

Z~k![det@ I2R~k!#.

This function can be expressed as a product over peri
orbits, using the identity ln det(I2R)5tr ln(I2R) and the
series ln(I2R)52(n>1Rn/n. One gets

Z~k!5)
p

@12e2l̃pl p/2ei (klp2pmp/2)#, ~47!

where l p is the length of the prime periodic orbitp, l̃ its
Lyapunov exponent per unit length, andmp its Maslov index.
This formal expression is equally valid for open and clos
graphs and thus its zeros give the eigenenergies in the
case~zeros on the realk axis! and the quantum scatterin
resonances in the second case, but, as for the trace form
the product over primitive periodic orbits does not conve
everywhere.

A remark is in order here about the difference between
quantum scattering resonances and the classical Polli
Ruelle resonances. The quantum scattering resonances
trol the decay of the quantum wave function and are defi
either at complex energiesEn or at complex wave number
or momentakn . In contrast, the Pollicott-Ruelle resonanc
control the decay of the classical probability density, wh
is as the square of the modulus of the quantum wave fu
tion. Accordingly, the Pollicott-Ruelle resonances are rela
to the complex Bohr frequenciesvmn5(Em2En)/\ and
have units of the inverse of time.
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In this and the following section, we shall consider un
where\51 and 2m51, so that the quantum wave numberk
is related to the energy byE5k2. In these units, the width o
a quantum scattering resonance isGn524 Rekn Im kn
and the velocity of a resonance isvn52 Rekn , so that
Gn522vn Im kn .

B. Topological pressure and the gap for quantum scattering
resonances

The chaotic properties of classical dynamics can be ch
acterized by quantities such as the topological entropy,
Kolmogorov-Sinai entropy, the mean Lyapunov exponent
the partial Hausdorff dimensiondH in the case of open sys
tems. All these quantities can be derived from the so-ca
topological pressure per unit timeP(b;v) which we ana-
lyzed in Ref.@9# for graphs.

In addition to these important properties, the topologi
pressure also provides information for the quantum scat
ing problem. In fact, the quantumz function has a structure
very similar to a Ruellez function with some exponentb
51/2 ~see Refs.@9,18#!. As a consequence, the quantumz
function is known to be holomorphic for Imk. P̃(b) where
P̃(b) is the so-called topological pressure per unit leng
Therefore the poles of thez function are located in the hal
plane

Im kn<
1

vn
PS 1

2
;vnD[ P̃S 1

2D .

The following result can thus be deduced@18–22#: If P̃( 1
2 )

,0 or equivalently if 0<dH, 1
2 the lifetimes $tn% are

smaller than a maximum quantum lifetimetq and there is a

gap in the resonance spectrum; ifP̃( 1
2 )>0 or equivalently if

1
2 <dH<1, the quantum lifetimes may be arbitrarily long.

In the first case, the partial Hausdorff dimension is sm
(0<dH, 1

2 ) and we can talk about a filamentary set
trapped trajectories. In the second case with1

2 <dH<1, the
set of trapped trajectories is bulky. Hence, the result sho
that a gap appears in the distribution of quantum scatte
resonances in the case of a filamentary set of trapped tra
tories. The gap is determined by the topological pressur
b51/2 which is the exponent corresponding to quantum m
chanics, as opposed to the exponentb51 that corresponds
to classical mechanics@18,22#.

The properties of the topological pressure yield the f
lowing important inequality between the quantum lifetimetq
and the classical lifetimetcl51/gcl :

1

tq
522PS 1

2
;v D<2P~1;v !5

1

tcl
,

where the equality stands only for a set of trapped trajec
ries that reduces to a single periodic orbit@18,19#. Accord-
ingly, the quantum lifetime equals the classical lifetime on
for a periodic set of trapped trajectories. On the other ha
the quantum lifetime is longer than the classical lifetime
a chaotic set of trapped trajectories. This result—which
5-10
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previously been proved for billiards and general Hamilton
systems in the semiclassical limit@18–22#—thus also ex-
tends to open graphs.

We note that it is thanks to the time-continuous class
dynamics that we can compute the above estimate of the
of resonances. Examples of this will be considered
Sec. VI.

C. Mean motion and the density of resonances

In addition to the possibility of a gap in the distribution
the scattering resonances, we also want to obtain the d
bution of the imaginary parts, which give the widths of t
scattering resonances. For this purpose, we first determ
the mean density of resonances. This can be obtained
lytically for a general graph and was done by Kottos a
Smilansky, who obtained a trace formula for the resona
density. Here, we proceed in a different way. Thez function
for a k-independent matrixT ~e.g., with Neumann boundar
conditions! is an almost periodic function ofk and several
results are known about its properties. In particular, the m
density of resonancesH(y1 ,y2) ~or zeros of thez function!
in a strip y1,Im k,y2 of the complex planek5x2 iy is
determined from the number of resonancesN(x1 ,x2 ,y1 ,y2)
in the rectangle (x1 ,x2 ,y1 ,y2) by the following relation
@27#:

H~y1 ,y2!5 lim
ux22x1u→`

N~x1 ,x2 ,y1 ,y2!

x22x1

5
1

2p
@M ~y2!2M ~y1!#,

whereM (y) is the mean motion of the function ofx

f y~x!5Z~k5x2 iy !. ~48!

The function

h~y!5H~0,y!5
1

2p
@M ~y!2M ~01!# ~49!

gives the density of resonances with Imk,y. The total den-
sity of resonances is therefore given byh(`). We shall com-
pute this number using the general properties of the func
Z(k).

1. Mean motion

An almost periodic functionf :tPR→C

f ~ t !5r ~ t !eif(t)

with real r (t) andf(t) has a mean motionM

M5 lim
t→`

f~ t !

t

if the limit exists.
The problem of computing the mean motion has a lo

history and is a difficult problem. It was posed by Lagran
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in 1781 and there are still only a few general results. For
almost periodic function formed by three frequencies ther
an explicit formula given by Bohl. Weyl proved the existen
of mean motion for functions with a finite number of incom
mensurate frequencies and also gave a formula to compu

The simplest result holds for the so-called Lagrang
case considered by Lagrange in his original work. We qu
the result because it is important for what follows.

Consider a function

f ~ t !5a0eiv0t1a1eiv1t1•••1aneivnt. ~50!

If

ua0u>ua1u1ua2u1•••1uanu

thenf has a mean motionM which isM5v0. We shall show
that the density of resonances is determined by the m
motion of the function in Eq.~48! in the Lagrangian case.

2. The density of resonances h„`…

Let us consider the expansion of the determinant involv
in the z function @see Eq.~6!#. If 2B is the dimension of the
square matrixR, then

det~lI2R!5(
l 50

2B

m2B2 ll
l

where m051,m15tr(2R), . . . , and m2B5det(2R). The
secular equation is( l 50

2B ml50. The general term

mp5 (
1< i 1< i 2<•••< i p<2B

~2R!S i 1 ••• i p

i 1 ••• i p
D ,

where

~2R!S i 1 ••• i p

i 1 ••• i p
D

is the principal minor of orderp obtained by eliminating the
n2p rows and columns of (2R) different from i 1••• i p .
This coefficientmp is the homogeneous symmetric polyn
mial of degreep that can be constructed from the 2B eigen-
values ofR; thereforemp is of the form1

mp5(
$Jp%

aJp
eik (

j PJp

l j ,

whereJp stands for a set ofp different integers in the interva
@1,2B# and$Jp% the set of elementsJp . The important point
to notice is that inmp there arep lengths.

It is clear that the only term that involves all the lengths
the graph in the expansion

f y~x!5det@ I2R~x2 iy !#

511m11•••1mp1•••1m2B211m2B ~51!

1Remember thatR(k)5TD(k) according to Eq.~7!.
5-11
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is

m2B5detR5e2iL totk detT5e2iL totxe2L toty detT. ~52!

For y→`, m2B is exponentially larger than the remainin
terms in Eq.~51! and the next leading termm2B21, which
can be estimated as

m2B21;ei (2L tot2 l min)k
detT

lmin
~53!

with lmin the minimum eigenvalue ofT, is exponentially
larger thanmp with p51, . . . ,2B22. Therefore we have

um2Bu.um2B21u1•••1u1u for y→`.

Thus, the functionf y(x) is in the Lagrangian case. The ter
m2B corresponds to the terma0eiv0t ~heret is replaced byx)
of the expansion Eq.~50! and the mean motion is given b
the frequency ofm2B given by Eq.~52!. Accordingly, we find
that M (`)52L tot .

In order to compute the density of resonancesh(`) @see
Eq. ~49!# we have to evaluateM (01). Since the upper hal
of the complex plane is empty of resonances we have
M (01)50 and thus from Eq.~49! we get the density of
resonances

h~`!5
L tot

p
. ~54!

This result prevails as long as detT5” 0. In the opposite case
the density is given by

h~`!5
2L tot2 l min

2p
~55!

if the corresponding constant factor does not vanish.
From this argument, it is clear that, once the functionf y

belongs to the Lagrangian case~that is, wheny5ymax), no
further resonance appears belowymax. This allows us to es-
timate how deep in the complex plane lies the shortest-liv
resonance. With this aim, we consider the largest terms of
expansion~51!, i.e.,

f y~x!5m2B1m2B211•••

with

m2B5e2iL totk detT
01620
at

g
e

and

m2B21;ei (2L tot2 l min)kdetT/lmin .

Thus the Lagrangian case holds approximately when

e2L toty.e(2L tot2 l min)y
1

lmin
,

that is, for

ymax;
1

l min
lnS 1

ulminu
D . ~56!

This estimate turns out to be quite good as we shall see
This result can be obtained also from the following arg

ment. The largesty5uIm ku that can be a solution of Eq.~6!
is approximately given by the equation

12eixl mineymaxl minlmin50

from where we obtain the result of Eq.~56!.
A similar argument was used by Kottos and Smilans

@16# to obtain the gap empty of resonances 0,y,ymin with

ymin;
1

l max
lnS 1

ulmaxu
D .

In Sec. V B, we presented a lower bound for this gap t
is very accurate. Chaotic systems with a fractal set of trap
trajectories of partial Hausdorff dimensiondH,1/2 have a
gap empty of resonances below the axis Rek given by

ymin52 P̃~1/2!.

This bound is based on the classical dynamics. In this c
the cumulative functionh(y) vanishes for 0,y,ymin

52 P̃(1/2).
The existence of the functionh(y) in the limit x5Rek

→` for the case of graphs and the relations~54! and~55! are
compatible with a conjecture by Sjo¨strand@23# and by Zwor-
ski @24,25# that the distribution of scattering resonanc
should obey a generalized Weyl law expressed in terms
the Minkowski dimension of the set of trapped trajectorie
because this Minkowski dimension is equal to 1 for t
quantum graphs.

3. Width distribution

The density of resonances with a given imaginary p
P(y) is defined by
P~y!dy5
$no. of resonanceskn5xn2 iyn such thaty,yn,y1dy%

$total no. of resonances%
~57!
5-12
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or in terms of the previously definedh(y)

P~y!5
dh~y!

dy
.

The power lawP(y);y23/2 was conjectured in Ref.@12#
to be a generic feature of the density of resonances for
tems with diffusive classical dynamics. The system stud
in Ref. @12# was the quantum kicked rotor whose classi
limit is the standard map. For some values of the parame
that appear in this map, the phase space is filled with cha
trajectories and no large quasiperiodic islands are obser
Working with these particular values, the standard map p
duces a deterministic diffusion. In Ref.@12#, the kicked rotor
has been turned into an open system by introducing abs
ing boundary conditions at some fixed values, say,1N/2 and
2N/2. The distributionP(y) for the scattering resonance
obtained in Ref.@12# is not identical to the one we observ
for a graph given in Sec. VI C. In particular, the dens
P(y) of Ref. @12# starts withP(y50)50 and grows until a
maximum value is reached aty;gcl , with gcl the classical
escape rate. It is the tail ofP(y) that decreases fromy
'gcl as the power lawP(y);y23/2.

The conjecture is that the power law holds for the tail
P(y), that is, for largey. We present here the argument
Ref. @12# that motivates this conjecture for systems with
diffusive classical limit.

Consider a classical open diffusive system that exte
from x52N/2 to x51N/2. We set absorbing boundar
conditions atx52N/2 and x51N/2. Consider att50 a
particle in the interval (2N/2,1N/2). Since the particle es
capes by a diffusion process the mean time that the par
takes to arrive at the border, starting at a distanceX from it,
is the diffusion timetd;X2/D. We suppose that the resona
states are more or less uniformly distributed along the ch
and that their quantum lifetime is proportional to the me
time taken by the particle to move fromX to the border, so
that uIm ku5Y;1/td;D/X2. Since the chain is symmetrica
under x→2x, we can assume a uniform distribution ofX
from the border,x52N/2 to the middlex50. The probabil-
ity that the imaginary part is smaller thany is thus

Prob$Y,y%5ProbH aD

x2
,yJ

5ProbHAaD

y
,XJ

512
2

N
AaD

y
,

wherea is a dimensionless constant. Therefore, the proba
ity density of the imaginary parts of the resonanceskn5xn
2 iyn is given by

P~y!5
d

dy
Prob$Y,y%5

AaD

N
y23/2. ~58!
01620
s-
d
l
rs
tic
d.
-

b-

f

s

le

in
n

il-

This qualitative argument can be criticized on vario
points. In particular, the constant factora is not determined
and the assumption that the result holds for the quantum
is questionable because of the use of classical considerat
A complete theoretical validation of this law is thus lackin
However, the numerical results presented below give sup
to this conjecture in the case of a multiconnected graph
is spatially extended~see Sec. VI C!.

VI. EXAMPLES AND DISCUSSION

A. Simple graphs with two leads

For the first two examples in this section, we consider
Neumann boundary condition@3# sab

i 52/n i2dab .
In Figs. 1~a! and 1~c!, we compare the decay of the qua

tum staying probability with the classical decay obtain
from the Pollicott-Ruelle resonances and we also depic
Figs. 1~b! and 1~d! the spectrum of quantum scattering res
nances for the corresponding graph. The initial wave pac
also plotted in Figs. 1~b! and 1~d! defines a spectral window

The excellent agreement in Fig. 1~a! is due to the fact that
the quantum and classical lifetimes of the resonances c
cide. In fact, for the simple graph@inset of Fig. 1~a!#, the
scattering matrix is

S5F 2
1

3

2

3

2

3
2

1

3

G1
4e2ikg

913e2ikg F1 1

1 1G ~59!

with l b5g. The resonances are given by the poles ofS in
Eq. ~59!, which are the zeros of 913e2ikg, that is,

kn56
2n11

2g
p2 i

ln 3

2g
~60!

with n integer. These resonances have a lifetimetn51/Gn
with Gn522vn Im kn5v(ln 3)/g where we usedv52 Rek.
This means that all the resonances have a lifetime given

tn5
g

v ln 3
. ~61!

This result could have been obtained using Eq.~47! and the
classical Pollicott-Ruelle resonances from Eq.~44!.

In fact, for this graph, the only periodic orbit is the on
that bounces on the bondb. The length of this periodic orbit
is l p52g. The stability coefficient is given byuApu2

5exp(2l̃plp)5@sb̂b
2

sbb̂
1

#5131
9 and we obtainl̃pl p5 ln 9. At

the vertex 2 the particle is reflected with trivial backscatt
ing and thus the analog of the Maslov indexmp52 for the
periodic orbit. Thus the quantum scattering resonances
the solutions of

12expS 2 ln 9

2
12igk1 ip D50

from which Eq. ~60! follows, while the classical Pollicott-
Ruelle resonances are given by the solutions of
5-13
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FIG. 1. ~a! Decay of the quantum staying probability for the graph of the inset. The straight line is the exponential decay of the c
density for the same graph.~b! The dots represent the quantum scattering resonances of the graph in~a!. The line superposed on the dots
the corresponding value associated with the classical decay rates of the classical Pollicott-Ruelle resonances. The curved line on t
is the initial wave packet.~c! The same as in~a! for the graph of the inset in~c!. The steepest slope corresponds to the classical decay w
the line with the smaller slope corresponds to the decay determined from the isolated resonance that is closest to the real axis in~d!. ~d! The
same as~b! for the graph of the inset in~c!.
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12exp~ ln 922gs/v !50

which follows from Eq.~44!. These solutions are

sn52
ln 9

2g/v
6

2inp

2g/v
. ~62!

Therefore, all the Pollicott-Ruelle resonances have the l
time tcl52g/v ln 95g/v ln 3. This lifetime coincides with
the quantum lifetime obtained from the resonances of
same graph in Eq.~61!.

The second graph in Figs. 1~c! and 1~d! has chaotic clas-
sical dynamics. In this case, we also observe a very g
agreement for short times between the quantum sta
probability and the classical prediction, and then a transit
to a pure quantum regime. The decay in the quantum reg
is again exponential because there is an isolated reson
that controls the long-time decay. In fact, as we see in F
01620
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e

d
g
n
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nce
.

1~d!, there is an isolated resonance very near the real
under the window given by the initial wave packet. The d
cay rate given by this resonance,Gn524 Rekn Im kn , gives
the straight line with the smaller slope.

B. Triangular graphs

The following example is a nice illustration of the ro
played by the Lagrangian mean motion in the density
resonances described in Sec. V C. Consider a graph with
form of a triangle, that is, we have three vertices and ev
vertex is connected to the two other vertices. The length
the bonds area, b, andc ~see Fig. 2!.

Now we add a semi-infinite scattering lead to each ver
and use the Neumann boundary condition at the vertices@see
Fig. 2~a!#. In this case, the resonances are determined by
zeros of
5-14
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f ~k!5e2ik(a1b1c)216eik(a1b1c)2e2ik(a1b)2e2ik(b1c)

2e2ik(a1c)23~eika1eikb1eikc!12750.

Replacingk5x2 iy we have that the mean motion off y(x)
for y→` is M (y→`)52(a1b1c) and the density is
given byh(`)5(a1b1c)/p, which illustrates Eq.~54!.

Now, consider the same graph but with two semi-infin
leads attached to each vertex@see Fig. 2~b!#. In this case, the
resonances are determined by the equation

e2ika1e2ikb1e2ikc1eik(a1b1c)54.

Replacingk5x2 iy we have that the mean motion off y(x)
for y→` is given by max$a1b1c,2a,2b,2c% and therefore
the density of resonances is given byh(`)5max$(a1b
1c)/2p,a/p,b/p,c/p%, which illustrates Eq.~55!.

An interesting observation is the following. The matrixT
that contains the transmission and reflection amplitudes
the triangular graph can be written as

Tb53
0 0 u 0 v 0

0 0 v 0 u 0

u 0 0 0 0 v

v 0 0 0 0 u

0 u 0 v 0 0

0 v 0 u 0 0

4
with u52b/22(12b)/3 and v5b/212(12b)/3 where
b51 for the graph connected to two scattering leads at e
vertex andb50 when there is only one scattering lead p
vertex. Note that detT50 if b51. We have computed th
zeros of the functionZb(k)5det@ I2TbD(k)# for 0<b<1.
It is observed that for some zeros in the lower half of t
complexk plane the imaginary part decreases very fast ab
increases. Therefore, we interpret the lowering of the den
for the triangle connected to two scattering leads per ve

FIG. 2. The open triangle quantum graph.~a! One scattering
lead is connected to each vertex.~b! Two scattering leads are con
nected to each vertex.

FIG. 3. Open graph built out of a periodic chain by attachi
semi-infinite leads on a graph made ofN unit cells. The figure
shows a chain withN56 unit cells.
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as the effect of resonances withuIm ku→`. However, it
should be noted that, even in the case that detT50, the
analysis leading to Eq.~56! @i.e., the competition between th
two leading terms of the functionf y(x) for y→`# permits
one to obtain an approximate upper boundymax.

C. Spatially extended multiconnected graph

Here, we consider the multiconnected graph of Fig. 3. T
classical dynamics on this graph was studied in Ref.@9#
where we showed that the escape is controlled by diffus

For this particular graph theT matrix is

Tbb855
2

3

5
if the particle is reflected, i.e., b5b8,

2

5
for bonds b5” b8 that are connected,

0 otherwise.

The spectrum of quantum scattering resonances of this g
is depicted in Fig. 4 for the chain withN55 unit cells.

1. Width distribution

For this graph, we have computed the densityP(y) of
resonance widths defined by Eq.~57!. The histogram of reso-
nance widths is plotted in Fig. 5 for different sizesN of the
chain. Note that no resonance appears belowymax52.276
which is the value computed from Eq.~56!. This value is
independent of the system sizeN for N>3. We have com-
puted the eigenvalues of the matrixT for different values of
N and we show the minimum eigenvalue in the followin
table:

N ulminu ymax

1 0.200 4.553
2 0.392 2.655
3 0.447 2.276

As we said, forN>3, this eigenvalue is independent ofN
and is given by the case withN53.

Figure 5 depicts the density of the imaginary parts on
log-log scale and the power lawP(y);y23/2 conjectured in

FIG. 4. Quantum scattering resonances for the graph in Fig
with N55 unit cells.
5-15
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FIG. 5. P(y) on normal and log-log scales for the chain of Fig. 3 with~a!,~b! N56; ~c!,~d! N57. The continuous line shows the powe
law y23/2. The distribution stops at the valueymax. The dashed line indicates the valuey5uIm ku5gcl/2 associated with the classical esca
rategcl .
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Ref. @12# is observed. This is shown for chains of differe
lengths in these figures. The power law holds for not
small sizesN. This observation is therefore a support for t
conjecture of Ref.@12# in the case of multiconnected graph
like that of Fig. 3.

2. Detailed structures in the resonance spectrum

Let us now discuss the details of the distribution of re
nances.

First of all, we notice that the statistical description w
have considered, that is, the distribution ofy, is based on the
homogeneous character of the resonance distribution a
the x5Rek axis. This homogeneity indeed holds on lar
scales as we see in Fig. 4. Nevertheless, at small scales
can see in Fig. 6 the formation of bands of quantum re
nances characteristic of a periodic system for which
Bloch theorem applies@26#. The reason is that, for long
01620
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-

ng

we
-

e
FIG. 6. Quantum scattering resonances~dots! and transmission

probability amplitudeTs8s1
~solid line! for the chain of Fig. 3 with

N57 unit cells.
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FIG. 7. ~a! Resonances for the chain of Fig. 3 withN57 ~circles! andN58 ~crosses!. ~b! The distribution of resonance widths for th
chain withN57. The straight line in~a! and~b! separates the two families of resonances: those that depend onN from those that do not. This
figure shows that the change in the distribution of the imaginary parts of the resonances is associated with the different fa
resonances.
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times, the system is able to resolve finer scales in wave n
ber ~or energy! and thus after a given time the system w
‘‘feel’’ the periodic structure and evolve ballistically as fo
lows from the Bloch theorem.

The distributionP(y) shows a peak at the origin~i.e., y
.0) which grows with the number of unit cells,N. This
behavior tells us that ‘‘bands’’ of resonances with smally are
created when we increase the size of the chain. In fact as
the resonances of one-dimensional open periodic poten
@26#, we haveN21 resonances per band and the bands c
verge as;1/N to the real axis whenN increases. This is
consistent with the ballistic behavior that should be obser
in the long-time limit.

On the other hand, the resonances with larger value
y5uIm ku are not arranged in a band structure and their nu
ber does not increase when we change the sizeN of the
system. In fact, these resonances are located at the
position in the complex plane for every value ofN. Therefore
we interpret such short-lived resonances as metastable s
that decay without exploring the whole system.

FIG. 8. Superposition of the log-log plots ofN3P(uIm ku) as a
function of y5uIm ku for N55, 6, and 8 and the same graph as
Fig. 3.
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In Fig. 7~a!, we superpose the resonance spectrum
chains with two different sizes. The figure shows that,
resonances with large values ofy5uIm ku, neither their po-
sition nor their number changes withN, but resonances with
small values ofuIm ku converge to the real axis as we in
creaseN. Therefore, the relative number of resonances in
tail of the distribution decreases as compared to the num
of resonances with small values ofy, which increases withN.
We can conclude that the resonance spectrum converge
the real axis in probability when we increaseN. This behav-
ior is in contrast with that of the simple systems analyzed
Ref. @26#, for which we observed thateach resonance con-
verges to the real axis asN increases.

Equation~58! predicts a relative decrease ofP(y) as 1/N.
This law is verified as shown in Fig. 8, where we plot f
clarity the functionN3P(Im k) for only a few cases. Ac-
cording to the theoretical distribution of Eq.~58! N
3P(Im k)}ADuIm ku23/2, where the right-hand side is inde
pendent ofN and, moreover, the proportionality factor
determined by the diffusion coefficient of the chain. We ha
computed the diffusion coefficient for this graph in Ref.@9#.
The continuous straight line in Fig. 8 corresponds to
diffusion coefficient of the infinite chain. The good agre
ment shows that the proportionality constanta in Eq. ~58! is
of order 1, as expected.

In Fig. 5, we observe deviations from the power law
small and large values ofuIm ku. The dashed lines in Fig. 5
indicate the value corresponding to the classical escape
We see from the figure that the distribution of imagina
parts is well described by the power law fory5uIm ku
.gcl/2 and the classical escape rategcl is near the transition
to this power law. On the other hand, the tail of the distrib
tion also deviates from the power law. The distribution fo
lows the power law until a value which decreases whenN
increases. Beyond this value the distribution seems to fl
tuate around an almost constant value, and then drops rap
to zero.
5-17
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The region where the distribution of imaginary parts flu
tuates around some value corresponds to the region w
the resonances are independent~in number and in position!
of the value ofN. This can be seen in Fig. 7. In Fig. 7~a!, we
depict the resonances forN57 andN58 and draw a line
that separates resonances that belong to bands and ch
with N from those that are independent ofN. This line is
given byy5uIm ku50.5. In Fig. 7~b!, we depict the density
of resonances forN57; the valuey5uIm ku50.5 is indi-
cated by the vertical straight line. This line marks the se
ration between the two families of resonances and thus
limit of the power lawy23/2.

D. Linear graph with emerging diffusion

For extended periodic open graphs, the classical de
given by the leading Pollicott-Ruelle resonance correspo
to the decay of a diffusion process@9#. Here, we analyze the
decay of the quantum staying probability for such a grap

Here, we consider a linear periodic graph with a unit c
composed of two bondsa andb of incommensurate length
l a and l b , respectively. At the vertex that join these tw
bonds we have a scattering matrixs(h2) and the vertices
that join two unit cells have a scattering matrixs(h1). These
scattering matrices are of the form

s~h!5F i sinh cosh

cosh i sinhG . ~63!

FIG. 9. Open graph built out of a periodic linear chain with
unit cell made of two bonds with scattering matrices~63! at each
vertex. The figure shows a chain withN52 unit cells.
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Therefore, the transmission and reflection probabilities
the classical dynamics areTi5cos2(hi) andRi5sin2(hi).

Figure 9 depicts an open graph by considering onlyN
units cells connected to semi-infinite leads at the left-ha
and right-hand sides of the finite graph.

1. Classical diffusive behavior

In the limit N→` of an infinitely extended chain, the
graph becomes periodic and the motion is diffusive. The d
fusion coefficient can be calculated by considering
Frobenius-Perron-type matrixQ(s,q) defined in Ref.@9# in
terms of the classical wave numberq and the rates. For the
present graph, we have that

FIG. 10. Plot of the lifetimetcl(N)51/gcl(N) for the chain of
Fig. 9 with N51, 2, 3, and 4 unit cells as a function ofN2. The
dashed line corresponding to the diffusion coefficientD50.506v
given by Eq.~65! is approached by the classical lifetimes for i
creasing sizeN of the open graphs. We have used the parame
h150.1, h25(A521)/2, l a50.5, andl b5A2.
Q~s,q!5F 0 e1 iqe2slb /vT1 e2sla /vR1 0

e2sla /vT2 0 0 e2slb /vR2

e2sla /vR2 0 0 e2slb /vT2

0 e2slb /vR1 e2 iqe2sla /vT1 0

G , ~64!
ed

las-
the
where the columns and rows are arranged in the o
(a,b,â,b̂). The diffusion coefficient is obtained from th
second derivative of the first branch atq50. Developing
det@ I2Q(s,q)# for small values ofq ands, we get

det@ I2Q~s,q!#52l ~R1T21T1R2!
s

v
1T1T2q21O~s2!

1O~sq2!1O~q4!.

The diffusion coefficientD is thus given by
er
D52

1

2

]2s0~q!

]q2 U
q50

5
vT1T2

2l ~R1T21T1R2!
, ~65!

wherel 5 l a1 l b is the total length of the unit cell.
In Ref. @9#, we considered other examples and show

that the classical escape rategcl(N) for a finite open chain of
sizeN is well approximated by Eq.~46! in the limit N→`.
For the present linear graph, Fig. 10 illustrates that the c
sical lifetimes of the chain are indeed determined by
diffusion coefficient according totcl51/gcl;N2 in the limit
N→`.
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FIG. 11. Scattering resonances of the chain of Fig. 9 withN51, 2, 3, and 4 unit cells in~a!, ~b!, ~c!, and~d!, respectively. We have use
the parametersh150.1, h25(A521)/2, l a50.5, andl b5A2.
er

e

fo
s.
2. Spectrum of scattering resonances and its gap

The resonance spectrum is depicted in Fig. 11 for diff
ent chain sizesN51, 2, 3, and 4.

The structures of the resonance spectrum and the pres
of a gap for the sizesN51 and N52 can be understood
thanks to the topological pressure plotted in Fig. 12
01620
-

nce

r

these graphs. We see that the chains withN51 andN52
unit cells have a valueP̃(1/2),0 and, therefore, a gap
empty of resonances. This gap appears in Figs. 11~a! and
11~b!. For the chains withN53 and N54 unit cells,
P̃(1/2).0 and we do not have this upper bound for Fig
11~c! and 11~d!.
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3. Decay of the quantum staying probability

For these open graphs, we have calculated the quan
staying probability in order to illustrate the emergence o
diffusive behavior.

The quantum time evolution was computed by using
method described in Sec. IV D. The propagator was ca
lated by fast Fourier transform from the Green function. T
staying probability was calculated by considering an init
Gaussian wave packet located on a bond 1 inside the gr

c1~y,0!5FA2

p

1

s~12e22Ēs2
!
G 1/2

sin~AĒy!e2(y2y0)2/4s2
.

This wave packet is built by the modulation of a Gauss

with a sine function of wave numberAĒ. The wave packet is
thus centered aty5y0 ~and we takey05 l 1/2). The wave
packet is effectively on the bond 1 ifDy52s! l 1.

In Fig. 13, we compare the decay of the quantum stay
probability with the decay obtained from the leadin
Pollicott-Ruelle resonance for different sizesN ~see Fig. 10!.
This leading Pollicott-Ruelle resonance is the classical

FIG. 12. From bottom to top, we plotted the topological pre
sure for the chain of Fig. 9 with the same parameter values a
Fig. 11 and the sizesN51, 2, 3, and 4 unit cells, respectively.

FIG. 13. From bottom to top: Decay of the quantum stay
probability for the chain of Fig. 9 with 1, 2, 3, and 4 unit cells a
the same parameter values as in Fig. 11. The straight lines give
corresponding classical decay as obtained from the Pollicott-Ru
resonances.
01620
m
a

e
-

e
l
h:

n

g

s-

cape rates052gcl( v̄) at the velocity corresponding to th
mean energyĒ of the Gaussian wave packet. The agreem
observed in Fig. 13 for short times between the class
decay and the quantum decay shows that for short times
quantum evolution follows a diffusion process. The deviati
that appears in Fig. 13 for longer times corresponds agai
the decay determined from an isolated resonance an
therefore a pure quantum effect.

VII. CONCLUSION

We have studied dynamical and spectral properties
open quantum graphs with emphasis on their relation to
transport properties of the corresponding classical dynam
The classical dynamics has been obtained as the clas
limit of the quantum dynamics.

The time evolution of the quantum system is obtain
from the propagator which is computed as the Fourier tra
form of the Green function. A closed expression and a m
tiscattering representation for the Green function have b
presented. We want to emphasize that both the classical
quantum evolution are considered with continuous time,
opposition to the discrete time evolution often considered
the literature of lattice networks.

In particular, we have computed the quantum stay
probability. For short times, this quantity decays expon
tially in time with the classical escape rate. This classi
escape rate is obtained from the classicalz function and
corresponds to the leading Pollicott-Ruelle resonance.
large open periodic graphs the leading Pollicott-Ruelle re
nance determines a decay dominated by diffusion, and
decay of the quantum staying probability reveals the eme
ing diffusion process at the quantum level.

On the other hand, the quantum spectral properties
also related to transport. The resonance spectrum rev
some features related to both the ballistic propagation in
periodic system for the long-time evolution and the diffusi
classical dynamics that is an approximation for the quant
dynamics for times shorter than the Heisenberg time.

Indeed, the Fourier transform relates the long-time beh
ior to the variations at small energy scales. At small sca
the resonance spectrum is arranged in bands ofN21 reso-
nances that converge as;1/N toward the real axis. There
fore the lifetime of each resonance in a band is proportio
to the size of the system, reflecting the ballistic transport t
characterizes a periodic system as stated by the Bloch t
rem @26#. Nevertheless, this ballistic propagation affects t
long-time dynamics. Indeed, the Bloch theorem gives inf
mation about stationary states. The short-time dynamic
determined by the large fluctuations of the resonance s
trum. At a large scale, the resonance spectrum is unifo
over the Rek axis ~see Fig. 4!. This distribution displays a
power law P(y);y23/2 obtained earlier in Ref.@12# and
conjectured to be a general law for open quantum syst
with a diffusive classical limit. Our numerical results suppo
this conjecture for multiconnected spatially extended grap

Moreover, we have presented an alternative derivation
the density of resonances obtained in Ref.@16#, which is

-
in

he
lle
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based on general properties of the secular equations, nam
that the density is an almost periodic function whose m
motion in the appropriate limit is Lagrangian. This meth
allows us to obtain an approximate lower bound for the d
tribution of y5uIm ku. Moroever, an upper bound for thi
distribution has been obtained from the topological press
P̃(b). This bound creates a gap in the resonance spec
under the conditionP̃(1/2),0 and is absent otherwise.

In summary, we have studied quantum properties of
tended open periodic graphs. We have shown that
Pollicott-Ruelle resonances determine the decay of the q
tum staying probability, which in turn shows the appearan
C

v.

ev

01620
ely,
n

-

re
m

-
e
n-
e

of diffusion at the quantum level. The diffusion process
thus encoded in the distribution of scattering resonances

ACKNOWLEDGMENTS

The authors thank Professor G. Nicolis for support a
encouragement in this research. Discussions with Profe
M. Zworski are acknowledged. F.B. is financially support
by the ‘‘Communaute´ française de Belgique’’ and P.G. by th
National Fund for Scientific Research~FNRS Belgium!. This
research is supported, in part, by the Interuniversity Attr
tion Pole program of the Belgian Federal Office of Scientifi
Technical and Cultural Affairs, and by the FNRS.
-

-

@1# P. Gaspard,Chaos, Scattering and Statistical Mechanics~Cam-
bridge University Press, Cambridge, UK, 1998!.

@2# T. Kottos and U. Smilansky, Phys. Rev. Lett.79, 4794~1997!.
@3# T. Kottos and U. Smilansky, Ann. Phys.~N.Y.! 273, 1 ~1999!.
@4# H. Schanz and U. Smilansky, Philos. Mag. B80, 1999~2000!.
@5# G. Berkolaiko and J. P. Keating, J. Phys. A32, 7827~1999!.
@6# F. Barra and P. Gaspard, J. Stat. Phys.101, 283~2000!; e-print

quant-ph/0011098.
@7# E. Akkermans, A. Comtet, J. Desbois, G. Montambaux, and

Texier, Ann. Phys.~N.Y.! 284, 10 ~2000!.
@8# H. Schanz and U. Smilansky, Phys. Rev. Lett.84, 1427~2000!.
@9# F. Barra and P. Gaspard, Phys. Rev. E63, 066 215~2001!;

e-print nlin.CD/0011045.
@10# G. Casati, G. Maspero, and D. L. Shepelyansky, Phys. Re

56, R6233~1997!.
@11# K. Pance, W. Lu, and S. Sridhar, Phys. Rev. Lett.85, 2737

~2000!.
@12# F. Borgonovi, I. Guarneri, and D. L. Shepelyansky, Phys. R

A 43, 4517~1991!.
@13# J. Avron, A. Raveh, and B. Zur, Rev. Mod. Phys.60, 873

~1988!.
@14# P. Exner and P. Seba, Rep. Math. Phys.28, 7 ~1989!.
.

E

.

@15# P. Exner and P. Seba, Phys. Lett. A128, 493 ~1988!.
@16# T. Kottos and U. Smilansky, Phys. Rev. Lett.85, 968 ~2000!.
@17# R. Balian and C. Bloch, Ann. Phys.~N.Y.! 60, 401 ~1970!.
@18# P. Gaspard and S. A. Rice, J. Chem. Phys.90, 2225~1989!; 90,

2242 ~1989!; 90, 2255~1989!; 91, 3279~1989!.
@19# P. Gaspard, inQuantum Chaos, edited by G. Casati, I. Guarn

eri, and U. Smilansky~North-Holland, Amsterdam, 1993!, pp.
307–383.

@20# P. Gaspard, D. Alonso, and I. Burghardt, Adv. Chem. Phys.90,
105 ~1995!.

@21# P. Gaspard and I. Burghardt, Adv. Chem. Phys.101, 491
~1997!.

@22# P. Gaspard inDynamics: Models and Kinetic Methods for Non
equilibrium Many-Body Systems, edited by J. Karkheck~Klu-
wer Academic Publishers, Dordrecht, 2000!, pp. 425–456.
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